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1.  Introduction 

One approach to the problem of representing speech signals is to use the speech 
production model in which speech is viewed as the result of passing a glottal ex- 
citation waveform through a time-varying linear filter that models the resonant 
characteristics of the vocal tract. In many applications it suffices to assume that 
the glottal excitation can be in one of two possible states corresponding to voiced 
or unvoiced speech. In attempts to design high-quality speech coders at the mid- 
band rates, generalizations of the binary excitation model have been developed. 
One such approach is multipulse [1] which uses more than one pitch pulse to model 
voiced speech and a possibly random set of pulses to model unvoiced speech. An- 
other is code excited linear prediction (CELP) [2] which models the excitation as 
one of a number of random sequences or "codewords" superimposed on periodic 
pitch pulses. In this chapter the goal is also to generalize the model for the glottal 
excitation, but instead of using impulses as in multipulse or random sequences as 
in CELP, the excitation is assumed to be composed of sinusoidal components of 
particular amplitudes, frequencies, and phases [3]. 

A number of other approaches to analysis/synthesis that are based on sine-wave 
models have been discussed in the literature. The phase vocoder [4] was, perhaps, 
the first attempt to represent the speech waveform by a set of narrowband func- 
tions. A set of fixed bandpass filters is used and one sine wave per filter is assumed 
to pass within each filter. The frequency deviation of the sine wave from the center 
frequency of each band is estimated via the phase derivative of the filter output. 
This frequency deviation is quantized and used in the vocoder synthesis. Portnoff [5] 
refined the phase vocoder by representing each sine wave component by excitation 
and vocal tract contributions. The sine-wave frequencies in the model were con- 
strained to be harmonically related. Another refinement of the phase vocoder was 
performed by Malah [6] who assumed the sine-wave frequencies were harmonic and 
then made the filter bank pitch-adaptive thus ensuring roughly one sine wave per 
filter. 

The analysis in these systems does not explicitly model and estimate the sine- 
wave components, but rather views them as outputs of a bank of uniformly-spaced 
bandpass filters. The synthesis waveform can be viewed as a sum of the modified 
outputs of this filter bank. Although speech of good quality has reportedly been 
synthesized using these techniques, the fact that only the phase derivative is coded 
means that absolute phase information is lost and this leads to degraded, reverber- 
ant speech, particularly for low-pitched speakers. 

A different approach was taken by Hedelin [7] who proposed a pitch-independent 
sine-wave model for use in coding the baseband signal for speech compression. 
The amplitudes and phases of the underlying sine waves were explicitly estimated 
using Kaiman filtering techniques, and each sine-wave phase was defined to be the 
integral of the associated instantaneous frequency. As in the phase vocoder, absolute 
phase information is lost. Another sine-wave based speech compression system has 
been developed by Almeida and Silva [8]. In contrast to Hedelin's approach, their 
system uses a pitch estimate during voiced speech to establish a harmonic set of sine 
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waves. The sine-wave phases are computed at harmonic frequencies from the short- 
time Fourier transform. To compensate for any errors that might be introduced - 
as a result of the harmonic sine-wave representation, a residual waveform is coded 
along with the underlying sine-wave parameters. To represent unvoiced speech, the 
model uses a set of narrowband basis functions [9]. Another approach to modeling • 
unvoiced speech in the context of the sine-wave model is to explicitly generate 
noise via the linear filtering of white noise whenever unvoiced speech components 
are detected in different bands. This approach, developed by Griffin and Lim [10] 
as the multi-band excitation (MBE) vocoder, uses overlap-add reconstruction for 
synthesizing unvoiced speech in unvoiced bands. For voiced bands the system uses 
a "bank of oscillators" which is simply another term for the sine-wave analysis 
and synthesis scheme described in this chapter. Kleijn [11] has used a version of 
the sine-wave system in the context of prototype waveform interpolation (PWI) to 
improve the quality of voiced speech synthesis in a CELP coder. More recently, 
Kleijn and Haagen [12, 13] have used it to define sine-wave frequency tracks along 
which complementary high- and low-pass filtering operations are done to separate 
rapidly-varying sine-wave parameters from slowly-varying sine-wave parameters to 
establish a basis for high-quality speech coding at 2400 b/s. 

In this chapter, a sinusoidal model for the speech waveform is derived which leads 
to an analysis/synthesis technique that is characterized by the amplitudes, frequen- 
cies, and phases of the component sine waves. The objective is to demonstrate how 
a "minimal" parameter set can be derived from this representation, and how this 
parameter set can be coded for high-quality speech at bit rates from 4.8 kb/s 
to 2.4 kb/s. Section 2 describes the basic sine-wave analysis/synthesis framework. 
The general model, which produces high-quality reconstruction for a large class of 
acoustical sounds including speech, music, and biologies, has too many parameters 
to be coded at low data rates. By focussing on the speech signal, speech-specific 
models are developed for the sine-wave frequencies, phases and amplitudes which 
are more amenable to efficient quantization. In section 3 a sine-wave based pitch 
estimator is derived and used to replace the sine-wave frequencies by a set of har- 
monically related sine waves. Section 4 describes a minimum-phase harmonic sine- 
wave speech model that depends on an envelope fitted to the sine-wave amplitudes 
and the pitch and voicing parameters. Then in section 5 the amplitude envelope 
is further constrained to be all-pole and methods for quantizing the parameters of 
the all-pole model are described for operation in the range from 4.8 kb/s to 2.4 
kb/s. Finally, some applications of sine-wave coding to contemporary digital com- 
munications problems will be discussed including network capacity optimization, 
multi-speaker conferencing and the improved multiband excitation (IMBE) coder 
[14]. 

2.  The basic sinusoidal analysis/synthesis system 

In this section the sine-wave representation and the corresponding 
analysis/synthesis system are developed drawing extensively from the authors' ear- 
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. lier published work on this topic [3, 15]. In the analysis stage, the amplitudes, 
frequencies, and phases of the model are estimated on a frame-by-frame basis, 
while in the synthesis stage these parameter estimates are interpolated to allow for 

. continuous evolution of the parameters at all the sample points between the frame 
boundaries. The resulting sine-wave analysis/synthesis system forms the basis for 
the material presented in the remainder of the chapter. 

2.1.   The sine-wave speech model 

In the speech production model [16], the speech waveform s(t) is assumed to be 
the output of passing a vocal cord (glottal) excitation waveform through a linear 
system representing the characteristics of the vocal tract. The excitation function 
is usually represented as a periodic pulse train during voiced speech, where the 
spacing between consecutive pulses corresponds to the "pitch" of the speaker, and 
is represented as a noise-like signal during unvoiced speech. Alternately, the binary 
voiced/unvoiced excitation model can be replaced by a sum of sine waves, [3, 15]. 
The motivation for this sine-wave representation is that voiced excitation, when 
perfectly periodic, can be represented by a Fourier series decomposition in which 
each harmonic component corresponds to a single sine wave. More generally, the 
sine waves in the model will be aharmonic which occurrs when periodicity is not 
exact and when the excitation is unvoiced. Passing this sine-wave representation of 
the excitation through the time-varying vocal tract results in the sinusoidal repre- 
sentation for the speech waveform, which, on a given analysis frame is described 
by 

L 

s(n) = ^ Ai cos(uin+ <f>i) (2.1) 
i=i 

where Ai and <f>i represent the amplitude and phase of each sine-wave component 
associated with the frequency track u>i and L is the number of sine waves. The 
accuracy of this representation is subject to the caveat that the parameters are 
slowly-varying relative to the duration of the vocal tract system response. 

2.2. Estimation of the sinusoidal speech parameters 

The problem in analysis/synthesis is to take a speech waveform, extract parameters 
that represent a quasi-stationary portion of that waveform, and use those param- 
eters or coded versions of them to reconstruct an approximation that is "as close 
as possible" to the original speech. If the speech waveform is represented by an 
arbitrary number of sine waves, the unconstrained parameter estimation problem, 
although easy to solve, leads to results that are not physically meaningful. Conse- 
quently, the approach taken here is heuristic and is based on the observation that 
when the speech is perfectly periodic, the sine-wave parameters correspond to the 
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harmonic samples of the short-time Fourier transform (STFT). In this case, the 
model in eq. (2.1) reduces to 

L 

s(n) = ^2 Aicos(n£co0 + <j>i) (2-2) 
i=i 

in which the sine-wave frequencies are multiples of the fundamental frequency wo 
and the corresponding amplitudes and phases are given by the harmonic samples 
of the STFT. If the STFT of s(n) is given by 

JV/2 

S(ui) -    ^    s(n)exp(-jnw) (2.3) 
n = -N/2 

then Fourier analysis gives the amplitude estimates as At = IS^&Jo)! and the phase 
estimates as <f>t = argS(£u0). Moreover, the magnitude of the STFT (i.e., the 
periodogram) will have peaks at multiples of w0- When the speech is not perfectly 
voiced, the periodogram will still have a multiplicity of peaks but at frequencies that 
are not necessarily harmonic and these can be used to identify an underlying sine- 
wave structure. In this case the sine-wave amplitudes and frequencies correspond 
to the peaks of the periodogram and the sine-wave phases are computed from the 
corresponding real and imaginary parts of the STFT. 

The above analysis implicitly assumes that the STFT is computed using a rect- 
angular window. Since its poor sidelobe structure will compromise the performance 
of the estimator, the Hamming window is commonly used to reduce the effect of 
sidelobe leakage. While this results in a very good sidelobe structure, it does so at 
the expense of broadening the mainlobes of the periodogram estimator. Therefore, 
in order to maintain the resolution properties that are needed to justify using the 
peaks of the periodogram, the window width is made at least two and one-half 
times the average pitch period. During frames of unvoiced speech, the window is 
held fixed at the value obtained on the preceding voiced frame or 20 ms whichever 
is the larger. 

Once the width of the analysis window for a particular frame has been specified, 
the pitch-adaptive Hamming window, w(n) is computed and normalized according 
to 

JV/2 

J2    «;(n) = l (2-4) 
n = -JV/2 

so that the periodogram peak will yield the amplitude of an underlying sine wave. 
Plotted in fig. 1 is a typical periodogram for voiced speech along with the amplitudes 
and frequencies that are estimated using the above procedure. The sine-wave phases 
are computed from the real and imaginary components of the STFT evaluated at 
sine-wave frequencies. 
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It should be noted that the placement of the analysis window w(n) relative to the 
time origin is important for computing the phases. (Typically in frame-sequential 

INPUT SPEECH 

TIME (ms) 

STFT MAGNITUDE 

2 
kHz 

Figure 1. Typical periodogram for a frame of voiced speech and the amplitude and frequency 
estimates of the underlying sine waves. 

processing the window, w(n), lies in the interval 0 < n < N, and is symmetric about 
N/2, a placement which gives the measured phase a linear term equal to -UJN/2. 

Since N is on the order of 100-400 discrete time samples, any error in the estimated 
frequencies results in a large random phase error and consequent hoarseness in the 
reconstruction. An error of one DFT sample, for example, results in a -^y phase 
error (where M is the DFT length) which could be on the order of TT. To improve 
the robustness of the phase estimate the center of the Hamming window is placed 
at the origin defined as the center of the current analysis frame, corresponding to 
n — 0; hence the window takes on values over the interval -N/2 <n< N/2. 

The approximations leading to the above periodogram estimator were based on 
the voiced speech assumption; nowhere have the properties of unvoiced speech been 
taken into account. To do this in a way that results in uncorrelated amplitude sam- 
ples requires use of the Karhunen-Loeve expansion for noise-like signals [17]. Such 
an analysis shows that a sinusoidal representation is valid provided the frequencies 
are "close enough" that the ensemble power spectral density changes slowly over 
consecutive frequencies. If the window width is constrained to be at least 20 ms 
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wide then, "on the average," there will be a set of periodogram peaks that will 
be approximately 100 Hz apart, and this provides a sufficiently dense sampling to 
satisfy the Karhunen-Loeve constraints. Plotted in fig. 2 is a typical periodogram 
for a frame of unvoiced speech along with the amplitudes and frequencies that are 
estimated using the above procedure. 

INPUT SPEECH 
Ü.0Ü 

0.01 iJiliiiliUlliil ml,               , IliLlu    , 
0 (ff^^ 

0.01 

1                                    1 1  
0 

ms 

STFT MAGNITUDE 

Figure 2. Typical periodogram for a frame of unvoiced speech and the amplitude and frequency 

estimates of the underlying sine waves. 

The above analysis provides a heuristic justification for the representation of the 
speech waveform in terms of the amplitudes, frequencies, and phases of a set of sine 
waves that applies to one analysis frame. As speech evolves from frame to frame, 
different sets of these parameters will be obtained. The next problem to address 
then is the association of amplitudes, frequencies, and phases measured on one 
frame with those that are obtained on a successive frame in order to define sets of 
sine waves that will be continuously evolving in time. 

2.3.  Overlap-add sine-wave synthesis 

If the amplitudes, frequencies, and phases that are estimated for the kth frame are 
denoted by (A\, u\, (j>\) then the synthetic speech for that frame can be computed 
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using 

V ' 
sk(n) = '£Ak

icos[nuk
l+ek

i] (2.5) 
1=1 

Since the sine-wave parameters will be time-varying, discontinuities at the frame 
boundaries will be introduced unless provision is made for smoothly interpolating 
the parameters from one frame to those on another frame. Rather elegant methods 
have been developed for performing this task that involve establishing sine-wave 
tracks by matching the sine-wave frequencies from frame to frame and then using a 
linear function to interpolate the amplitudes and a cubic phase function to interpo- 
late the frequencies and phase [3, 8]. Although solving the problem of synthesizing 
speech waveforms from a down-sampled set of sine-wave parameters, the method 
is not without significant computational expense particularly in the time required 
to execute the matching algorithm. Some systems attempt to avoid this problem 
using harmonic matching [8, 10, 12], but frequency chirps can be introduced un- 
less the system is designed to insure that the pitch does not change significantly 
between analysis frames. This requires that the matching not be used if the pitch 
changes too much (« 10%) [51] or that the frame size be kept sufficiently small (w 
5 ms) [12]. While the more general approach to sine-wave synthesis is needed for 
some applications such as signal separation for speech [12] and for music [23], the 
overlap-add interpolator [20, 21] eliminates the need to establish sine-wave tracks, is 
much simpler to implement and is perfectly satisfactory for the speech coding task 
provided the synthesis frame is made short enough that the sine-wave parameters 
satisfy the stationarity assumption. 

In this case the synthetic speech waveform is obtained by applying eq. (2.5) 
to the sine-wave data on frames k — 1 and k to generate the waveforms sk~1(n) 
and sk(n) respectively and these are each appropriately weighted, overlapped and 
added. Computationally this is equivalent to 

s(n) = ws(n)sk-1(n) + ws(n-T)sk(n-T) (2.6) 

where ws(n) is the overlap-and-add synthesis window that is designed such that 

ws(n) + ws(n - T) = 1 (2.7) 

Triangular, Hanning and trapezoidal windows have typically been used for the sine- 
wave interpolation process. 

2.4- Experimental results 

In order to determine the effectiveness of the proposed sine-wave model a non-real- 
time floating-point simulation was developed using the analysis/synthesis system 
shown in fig. 3. 
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The speech processed in the simulation was low-pass-filtered at 4 kHz, digitized 
at 8 kHz, and analyzed at 10 ms frame intervals. A 512-point FFT using a pitch- 
adaptive Hamming window, having a width which was two and one-half times the 
average pitch gave accurate peak estimation for both voiced and unvoiced speech 
provided the window was at least 20 ms wide. The maximum number of peaks 
that was used in synthesis was set to a fixed number and, if excessive peaks were 
obtained, only the peaks corresponding to the first 100 frequencies were used. As 
shown in fig. 3 the triangular window was used in the overlap-and-add synthesis 
procedure. 

iP 

^FREQUENCIES 
WINDOW 

SINE-WAVE 
GENERATOR 

■^ 

SUM ALL 
SINEWAVES PHASES 

AMPLITUDES T -T 0 T 

SYNTHETIC 
SPEECH 
OUTPUT 

Figure 3. Block diagram of sine-wave analysis/synthesis system. 

A large speech data base has been processed with this system, and it has been 
found that the synthetic speech was perceived to be essentially indistinguishable 
from the original. Visual examination of many of the reconstructed passages shows 
that the waveform structure is essentially preserved. This suggests that the quasi- 
stationarity conditions are satisfactorily met and that the use of the parametric 
model based on the amplitudes, frequencies, and phases of a set of sine-wave com- 
ponents appears to be justifiable for both voiced and unvoiced speech. Further- 
more, when the overlap-and-add method was used in place of the matching and 
cubic-phase interpolation algorithm, there was no loss in performance provided the 
synthesis frame size was no greater than « 12.5 ms. For a synthesis frame size T, 
the overlap-and-add method implicitly assumes that the sine-wave parameters are 
stationary over a window that is IT in length. For T corresponding to a frame 
size greater than the 12.5 ms frame, stationarity would have to hold longer than 
25 ms and this is clearly beyond the limits of the speech production mechanism. 
Experiments were performed using different windows satisfying eq. (2.7), such as 
the triangular and Hanning windows, but no discernible difference was perceived. 
In another experiment the inverse FFT was used to compute eq. (2.5) and, pro- 
vided the FFT length was at least 512 points, for 4 kHz bandwidth speech no loss 
in quality was detected. 
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Although the sinusoidal model was originally designed for a single speaker, the 
general aharmonic model works equally well for reconstructing multi-speaker wave- 
forms, music, speech in a musical background, and marine biologic signals such as 
whale sounds. Furthermore, it was found that the reconstruction did not break down 
in the presence of noise. The synthesized noisy speech is essentially perceptually 
indistinguishable from the original with no modification of the noise characteristics 
providing experimental justification for the validity of the Karhunen-Loeve repre- 
sentation for noise-like signals. 

Sine-wave analysis/synthesis has had a number of successful applications includ- 
ing time-scale and pitch-scale modification [22], peak-to-rms reduction [19], and 
two-talker separation [18]. It has been used for computer music synthesis [23] and 
for the analysis of vibrato [24]. More recently the decomposition of speech into 
sine-wave tracks has been used by Kleijn and Haagen [12, 13] to provide a basis for 
separating speech into slowly- and rapidly-varying components. 

However the basic model that represents speech in terms of sets of sine-wave 
amplitudes, frequencies and phases turns out not to be amenable to low rate speech 
coding because there are simply too many parameters to be coded. In order to 
compress the data rate, therefore, the class of input signals must be restricted to 
speech so that more structured models for the sine-wave parameters can be used. In 
the next section a harmonic model for the sine-wave frequencies will be derived that 
will lead to a sine-wave based pitch extraction algorithm, which when used with the 
harmonic samples of the amplitude and phase of the STFT leads to high-quality 
synthetic speech. Then in section 4 a minimum-phase harmonic speech model will 
be developed that avoids the problem of working with the measured amplitudes and 
phases. The issues that arise in quantizing the parameters of the minimum-phase 
model to achieve performance at 4.8 kb/s and 2.4 kb/s will then be discussed in 
section 5. 

3.  A model for the sine-wave frequencies 

The first step in the development of a low-rate sine-wave speech coder is to develop 
a model for the sine-wave frequencies. The most efficient model is based on the 
assumption that the sine-waves are harmonically related and then the problem is 
to estimate the frequency of the fundamental such that the harmonic set of sine 
waves is a "best fit" to the measured set of sine waves [25]. During voiced speech 
the estimated frequency can be interpreted as the speaker's pitch and the accuracy 
of the harmonic fit becomes an measure of degree to which the analyzed speech 
segment is voiced. During unvoiced speech the fundamental frequency has no phys- 
ical meaning, but, with careful design of the estimation and synthesis procedures, 
it can lead to an effective sine-wave representation for speech in the unvoiced state. 
While there are now available time-domain pitch estimation algorithms that pro- 
duce accurate and reliable pitch tracks that could have been used to determine the 
fundamental frequency of the harmonic sine-wave representation [26], the object 
here is to see if the frequency-domain approach could lead to new insights into the 
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pitch estimation and voicing detection problems. 

3.1. Parameter estimation for the harmonic sine-wave model 

As a first step in the analysis procedure, it is assumed that a frame of the input 
speech waveform has already been analyzed in terms of its sinusoidal components 
using the techniques described in section 2. The measured speech data, s(n) can 
therefore be represented as 

L 

s(n) = ^2 Aeexp[j(nu>e + 6t)] (3.1) 
i=i 

where {Ai,ue,9i}f=l represent the amplitudes, frequencies, and phases of the L 
measured sine waves 1. The goal is to try to represent this sinusoidal waveform 
by another waveform for which all of the frequencies are harmonic. This latter 
waveform can be modeled as 

K(w0) 

s(n;u>0,<f>)=   ^T Ä(ku}0)exp[j(nkiü0 + <j>k)] (3.2) 
*=i 

where LO0 = 2TT f0/fs is the normalized fundamental frequency, K(UQ) is the number 
of harmonics in the speech bandwidth, Ä(u>) is the vocal tract envelope, and 
<f> = (<j)1, <f>2, ■ ■ ■, <j>K{ui0)) represents the phases of the harmonics. Henceforth, wo will 
be referred to as the "pitch", although during unvoiced speech this terminology is 
not meaningful in the usual sense. It is desired to estimate the pitch frequency w0 

and the phases (<pi, <f>2, ••-, <f>K(w0)) 
such tnat *(") is as "close as possible" to s(n) 

according to some meaningful criterion. A reasonable estimation criterion is to seek 
the minimum of the mean-squared-error (MSE), 

1 N/2 
e(wo,<^)=^—-j;    Yl    Hn)-s(n;oj0,(f))\2 (3.3) 

N/2 

E 
n = -iV/2 

over wo and </>. The MSE in eq. (3.3) can be expanded as 

JV/2 

n = -N/2 

E(WO,^) = -^Y    £    {Hn)\2-2Re[s(n)s*(n;w0, <f>)]+ |l(n;o;o,^)|2} 

(3.4) 

1   The analysis in this section is simplified by using the complex sine-wave representation 
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The first term of eq. (3.4) represents the power in the measured signal and is 
independent of the unknown parameters. It is denoted by 

p°   =   j^n  E  K")l2 (3-5) 
n = -N/2 

Substituting eq. (3.2) in the second term of eq. (3.4) leads to the relation 

N/2 K{w0) N/2 

]P    s(n)s*(n;u)0,<f>) =   ^ ' Ä(kw0)exp(-j</>k)    ^    s(n)exp(-jnkw0) 
n = -N/2 * = 1 n = -N/2 

(3.6) 

Finally, substituting eq. (3.2) in the third term of eq. (3.4) leads to the relation 

1 N/2 K(w0)  _ 

j— J2  l*(w^)|2  *   E Ä2(k"°) (3-7) 
n = -N/2 fc = l 

where the approximation is valid provided the analysis window satisfies the condi- 
tion (JV+1) ~^> 2ir/u>o, which is more or less assured by making the analysis window 
two and one-half times the average pitch period. This condition assumes that the 
average pitch has already been computed, an issue that will be addressed later in 
the section. Letting 

N/2 

5(w) = Jj-jy    X)    s{n)exp{-jnu) (3.8) 
n=-JV/2 

denote the short-time Fourier transform (STFT) of the input speech signal, and 
using this in eq. (3.6), then the expression for the MSE in eq. (3.4) becomes 

K{u0) K(w0) 

e(u)0, <f>) = Ps-2Re{Y^ Ä(kui0)exp(-j<j>k)S(ktü0)} +  J^ Ä2(ku>0) 
k=l k=l 

(3.9) 

Since the phase parameters only affect the second term in eq. (3.9), the MSE will 
be minimized by choosing 

fa = arg[S(kuj0)} (3.10) 
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and the resulting MSE will be given by 

e(w0) = P. ~ 2 J2 Ä(kw0)\S(kwo)\ +  Yl ^(ku0) (3.11) 
fc=i *=i 

The unknown pitch affects only the second and third terms in eq. (3.11), and these 
can be combined by defining 

K(wo) ,   _ 

p(w0) =  J2 Ä(küJ0)[\S(kLüo)\ - ^Ä(kw0)] (3.12) 
jfe=i 

and the MSE can then be expressed as 

e(w0)    =    P.    -    2p(w0) (3-13) 

Since the first term is a known constant, the minimum-mean-squared-error (MMSE) 
is obtained by maximizing p(w0) over w0- 

It is useful to manipulate this metric further by making explicit use of the sinu- 
soidal representation of the input speech waveform. Substituting the representation 
in eq. (3.1) first in eq. (3.5) the measured signal power becomes 

Ps    =    X>? (3-14) 

and then in eq. (3.8) the STFT becomes 

L 

S(u) = y]Aiexp(j9i) sinc(u){, - w) (3.15) 

where 

1 ^ <■     x «fa[(*+l)f] 
sinc{x) = WT-    ^    exp(jnx)    =     {N + 1)sin{x) 

T     n = -N/2 V 2 

(3.16) 

Since the sine waves are well-resolved, the magnitude of the STFT can then be 
approximated by 

L 

|5(w)|    «    ^AtDiui-u) (3-17) 
i=\ 

where 

D(x) = lSinC("X)    i{W-T^ (3.18) 
10 otherwise 
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The optimization criterion then becomes 

K(ül0) L y 

p{u0) =  J2 Äikua^AtD^ut - kojo) - ^Ä(kuj0)] (3.19) 
fc=i 1=1 

To gain some insight into the meaning of this criterion, suppose that the input 
speech is periodic with pitch frequency to*. Then w< = £w*,At = Ä(£u*) and 

When wo corresponds to submultiples of the pitch, the first term in eq. (3.19) 
remains unchanged, since D(un — kcjo) = 0 at the submultiples; but the second term, 
because it is an envelope and always non-zero, will increase at the submultiples of 
w*. Asa consequence 

p(— )<p(u*)   m = 2,3,--- (3.21) 
m 

which shows that the above optimization criterion leads to unambiguous pitch esti- 
mates. This is possibly its most significant attribute, as it has been found through 
extensive experimentation that the usual problems with pitch period doubling do 
not occur with this metric. However, the frequency domain implementation can lead 
to additional processing advantages, the first of which is pitch-adaptive resolution. 

3.2. Pitch-adaptive resolution 

In the above formulation it was implied that the analysis window was fixed at N+1 
samples. This would mean that the main lobe of the sine-function, which measures 
the distance of the measured sine-wave frequencies from the harmonic candidates 
(i.e., sinc(u>i - kui0) ~ (w* - ku0)

2 for \OJI - ku>0\ small) would be fixed for all pitch 
candidates. This is contrary to the fact that the ear is perceptually more tolerant to 
larger errors in the pitch at high pitch frequencies than at lower pitch frequencies. 
Moreover, the sine-function distance measure of the error is meaningful only over 
each harmonic lobe. These effects can be accounted for by defining the distance 
function D(x) at the kth harmonic lobe to be 

5m[27r(^)]       r    _ni        ,     ,   ^   Wo D^ ~ *wo) =     n_,Lj^. for all \u - kcoo | <  -f (3.22) 

and to be zero elsewhere. In this way the resolution becomes very sharp at low 
pitch values, and in contrast, becomes quite broad at high values of the pitch. It 
is this expression which is used in eq. (3.19) to compute the first revision to the 
optimality criterion. 
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3.3. Enhanced discrimination 

The MSE criterion is closely related to the design of a Gaussian classifier for which 
the classes, the pitch candidates, are assumed to be independent. It is desirable that 
the classification algorithm not only detect the correct class with high probability, 
but also suppress the likelihood that any other class might be detected. This feature, 
which in a neural net classifier is known as negative reinforcement [27] can be 
incorporated into the MSE pitch estimation algorithm by noting that if w0 were the 
true pitch, then there would be at most one measured sine wave in each harmonic 
lobe tuned to LüQ. Therefore, if there are more, then only the one that contributes 
most to the MSE should be computed. Since the lobes are determined by the pitch- 
adaptive sine-function in eq. (3.22) and, since each lobe spans one harmonic interval 
defined by the set 

L(kuo) = {w : kw0 - -y < w < ku>0 + —} (3.23) 

then discrimination will be enhanced by allowing only the largest weighted sine 
wave for each harmonic lobe. The second revision to the pitch optimality criterion 

K(w0) 1  _ 

p(u0) =  J2 Mk^o){     max     [ AtD(ut - kw0)} - -Ä(kw0)}     (3.24) 
k=l LüieL(ku>o) 

In addition to providing greater robustness against additive noise (since the small 
peaks due to noise are ignored), the enhanced MSE criterion insures that speech of 
low pitch will less likely be estimated as a high pitch. Moreover, if the above imple- 
mentation is thought of as a form of small-signal-suppression and, if the harmonic 
lobe structure is thought of as an auditory critical band filter, then it is possible to 
speculate that enhanced discrimination is not unlike the effect of auditory masking 
of small tones by nearby large tones 

3-4-  The formant interaction problem 

One of the more important pitch estimation techniques in current use is based 
on the correlation function. In some respects it is the time domain duality to the 
correlation implicit in the first term in eq. (3.19). One problem with the time-domain 
correlation technique is the result of the interaction between the pitch and the first 
formant. If the formant bandwidth is narrow relative to the harmonic spacing, 
the correlation function reflects the formant frequency rather than the underlying 
pitch. By inverse filtering the speech waveform and modifying the computation 
of the correlation function, the formant interaction problem no longer limits the 
performance of contemporary time-domain pitch estimators [26]. 
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In the frequency domain the formant interaction problem arises as the sine-wave 
amplitude closest to the formant frequency tends to dominate the MSE criterion 
and lead to an ambiguous pitch estimate if that sine-wave is other than the first 
harmonic. This effect can be eliminated by reducing the dynamic range of all of the 
sine-wave amplitudes and, in turn, the amplitude envelope. One way to do this is 
to replace the measured sine-wave amplitudes by 

At = f-^-V 0 < 7 < 1 (3-25) 

where Ämax = max{At)%=v Since the MSE criterion leads to maximal robustness 
against additive white Gaussian noise, it was desirable to keep 7 as close to unity 
as possible, introducing just enough amplitude compression to eliminate the for- 
mant interaction problem. Too much compression causes the low level peaks due to 
noise to distort the MSE criterion. Ultimately, the compression factor was chosen 
experimentally to be 7 = .5. 

3.5. Sine-wave amplitude envelope estimation 

It has been shown that if the envelope of the sine-wave amplitudes is known, then 
the MSE criterion can lead to unambiguous estimates of the pitch. While a number 
of methods might be used for estimating the envelope using linear prediction or 
cepstral estimation techniques, for example, it was desirable to use a method that 
led to an envelope that passed through the measured sine-wave amplitudes. Such 
a technique has already been developed in the spectral envelope estimation vocoder 
(SEEVOC) [28]. 

The SEEVOC algorithm depends on having an estimate of the average pitch, 
denoted here by Q0. The first step is to search for the largest sine-wave amplitude 
in the interval [-jf-, ^]. Having found the amplitude and frequency of that peak, 
labeled (Ai,ui), then the interval [wi + ^,wi + ^] is searched for its largest 
peak, labeled (Ä2,w2). The process is continued by searching the intervals [u>t-i + 
^, CÜ1-1 + ^] for the largest peaks, (At,u>e) until the edge of the speech bandwidth 
is reached. If no peak is found in a search bin, then the value of the short-time 
Fourier transform (STFT) magnitude at the bin center is used and becomes the 
point from which the search procedure is continued. The principle advantage of 
this method is the fact that any low-level peaks within a harmonic interval will 
be masked by the largest peak, presumably a peak that is close to an underlying 
harmonic. Moreover, the procedure is not dependent on the peaks being harmonic, 
nor on the exact value of the average pitch since the procedure resets itself after 
each peak has been found. The SEEVOC envelope is then obtained by applying 
piecewise constant interpolation between the sine-wave amplitudes and frequencies 
that were obtained using the SEEVOC peak-picking routine. It is this envelope that 
is used for Ä(u>) in the evaluation of the pitch estimation criterion in eq. (3.24). 
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3.6.   Two-pass pitch estimation 

The MSE pitch extractor is predicated on the assumption that the input speech 
waveform has been represented in terms of the sinusoidal model. This implicitly 
assumes that the analysis has been performed using a Hamming window approxi- 
mately two and one-half times the average pitch. Moreover, the SEEVOC technique 
also assumes that an estimate of the average pitch is available. It seems, therefore, 
that the pitch has to be known in order to estimate the average pitch, in order 
to estimate the pitch. This circular dilemma can be broken by using the sine-wave 
based pitch estimator on a fixed window of width two and one-half times the largest 
pitch period. The mean-squared-error measure of the quality of the harmonic fit 
can be used to control the up-date of the average pitch which in turn is used in 
computing the SEEVOC envelope. The estimated pitch is then used to set the 
pitch-adaptive window which is necessary to get the best estimate of the sine-wave 
amplitudes prior to coding. Since this requires that the entire STFT analysis be 
repeated, the pitch extraction algorithm could also be repeated using the sine-wave 
parameters obtained using the pitch-adaptive window. However this proves to be 
computational expensive for single-chip DSP applications. The complexity can be 
reduced significantly by restricting the search range of the second search to a small 
neighbourhood about the pitch estimated on the fixed wide window. Little, if any, 
performance loss has been observed using the pitch refinement technique. Moreover, 
since the purpose of the first search is to estimate only the pitch, the STFT analysis 
needs to be performed over only the 1000Hz baseband since it is in this region that 
the harmonic structure is most reliable during voiced speech. 

In order to provide the SEEVOC algorithm with an average pitch, it is necessary 
to determine when the pitch represents an essentially voiced frame. This will be the 
subject discussed in the next section. 

3.7.   Voicing detection 

In the context of the sinusoidal model the degree to which a given frame of speech 
is voiced is determined by the degree to which the harmonic model fits the original 
sine-wave data. The accuracy of the harmonic fit can be related, in turn, to the 
signal-to-noise ratio (SNR) defined by 

SNR    =     £» W")'2 r (3.26) 
£„|s(n)-s(n;w0)|

2 

where w0 is the pitch estimated using the procedures described in the previous 
sections. From eqs. (3.3) and (3.13) it follows that 

SNR =   p  
p:r, (^) 

Ps - 2p(uQ) 
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where now the input power, Ps, is computed for the compressed sine-wave ampli- 
tudes that were defined in eq. (3.25). If the SNR is large, then the MSE is small and 
the harmonic fit is very good, which indicates that the input speech is most likely 
voiced. For small SNR, on the other hand, the MSE is large and the harmonic fit 
is quite poor which indicates that the input speech is more likely to be unvoiced. 
Therefore, the degree of voicing is functionally dependent on the SNR. Although 
the determination of the exact functional form is difficult to determine, one that 
has proven useful in several speech applications is the following: 

PV(SNR) 

1 SNR>li dB 
±(SNR - -4) 4dB< SNR< 13 dB 

0 SNR< 4 dB 
(3.28) 

where, Pv, the voicing level, represents the likelihood that the speech is voiced. The 
average pitch can be computed by using a simple first order filter updated when- 
ever the voicing level is above some reasonable threshold (RJ .8). Pitch continuity 
constraints can also be added, allowing for a relaxation of the voicing threshold. 

3.8. Experimental results 

In one implementation of the MSE pitch extractor the speech was sampled at 8 kHz 
and Fourier analyzed using a 512-point FFT. The sine-wave amplitudes and frequen- 
cies were determined over a 1000 Hz bandwidth. The locations of the frequencies 
were refined using quadratic interpolation. In fig. 4(b), the measured amplitudes 
and frequencies are shown along with the piecewise-constant SEEVOC envelope. 
Square-root compression has been applied to the amplitude data. Figure 4(c) is a 
plot of the first term in eq. (3.19) over a pitch range from 38 Hz to 400 Hz and the 
inherent ambiguity of the correlator is apparent. It should be noted that "most of 
the time" the peak at the correct pitch has the largest value, but during steady vow- 
els the ambiguous behavior illustrated in the figure commonly occurs. Figure 4(d) 
is a plot of the overall MSE criterion and the manner in which the ambiguities are 
eliminated is clearly demonstrated. Figure 5 illustrates typical results for a segment 
of unvoiced speech. 

3.9. Harmonic sine-wave model 

Validating the performance of a pitch extractor can be a time-consuming and labori- 
ous procedure since it requires a comparison with hand-labeled data. The approach 
used in the present study was to reconstruct the speech using the harmonic sine- 
wave model and to listen for pitch errors. The procedure is not quite so straightfor- 
ward, however, since during unvoiced speech meaningless pitch estimates are made 
which can lead to perceptual artifacts whenever the pitch estimate is greater than 
about 150 Hz. This is due to the fact that in these cases there are too few sine waves 
to adequately synthesize a noiselike waveform. This problem has been eliminated 
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Figure 4. Typical pitch estimator results for voiced speech. 

by defaulting to a fixed low pitch (« 100 Hz) during unvoiced speech whenever 
the pitch exceeds 100 Hz. The exact procedure for doing this is to first define a 
voicing-dependent cutoff frequency, wc, as 

uc(Pv) = KPV 
(3.29) 

which is constrained to be no smaller than 2?r (1500 Hz//„). If the actual pitch 
estimate is ui0, then the sine-wave frequencies used in the reconstruction are 

jktoo for ku>o  < uc{Pv) 

"k~\k*Lu0-{-{k-k*)u>u for ku0  > uic(Pv) 
(3.30) 
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Figure 5. Typical pitch estimator results for unvoiced speech. 

where k* is the largest value of k for which k*uo < uic(Pv), and where u>u, the 
unvoiced pitch corresponds to 100 Hz (i.e., u>u — 2ir(100/f$)). Note that if w0 < wu, 
then u>k = ku0 for all k. The harmonic reconstruction then becomes 

K 

s(n;u)0) = ^2A(ujk)exp[j(nwk + <j>k)) 
k-l 

(3.31) 

where $k is the phase of the STFT at frequency u>k- Strictly speaking, this pro- 
cedure is harmonic only during strongly-voiced speech since if the speech is a 
voiced/unvoiced mixture the frequencies above the cutoff, although equally spaced 
by uiu, are aharmonic, since they are themselves not multiples of the fundamental 
pitch. 
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The synthetic speech produced by this model is of very high quality, almost per- 
ceptually equivalent to the original, provided the frame-rate is less that RJ 12.5 ms. 
Not only does this validate the performance of the MSE pitch extractor, but it 
also shows that if the amplitudes and phases of the harmonic representation could 
be efficiently coded, then only the pitch and voicing would be needed to code the 
information in the sine-wave frequencies. Methods have been developed for time- 
differentially encoding the sine-wave phases, but the resulting coder must operate 
at around 13 kb/s. In order to achieve low data rates, therefore, models have to be 
developed for the sine-wave phases. This will be one of the topics discussed in the 
next section. 

4.  Minimum phase harmonic sine-wave speech model 

In the previous section it was shown that that synthetic speech of high quality 
could be synthesized using a harmonic set of sine waves provided the amplitudes 
and phases were the samples of the magnitude and phase of the short-time Fourier 
transform at each of the sine-wave harmonics. Even though the harmonic model 
eliminated the need to code the sine-wave frequencies, the amplitudes and phases 
would have to be quantized, and, in general, there remain too many parameters to 
encode and achieve operation at 4800 b/s and less. Therefore more of the properties 
of the speech production mechanism need to be exploited in order to further reduce 
the size of the parameter set. In this section models for the glottal excitation and 
vocal tract transfer function will be used to obtain a reduced parameter set for 
coding. 

4-1.   Voiced speech sine-wave model 

During strongly voiced speech the production of speech begins with a sequence of 
excitation pitch pulses that represent the closure of the glottis at a rate given by 
the pitch frequency u0. Such a sequence can be written in terms of a sum of sine 
waves as 

L 

e(n) = ^ exp[j(n - n0)üJt] (4-1) 

where n0 corresponds to the time of occurrence of the pitch pulse nearest the 
center of the current analysis frame. The occurrence of this temporal event, called 
the onset time, ensures that the underlying excitation sine waves will be in phase at 
the time of the occurrence of the glottal pulse. It is noted that although the glottis 
may close periodically, the measured sine waves may not be perfectly harmonic, 
hence the frequencies u>t may not in general be harmonically related to the pitch 
frequency. 
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The next operation in the speech production model shows that the amplitude 
and phase of the excitation sine waves are altered by the glottal pulse and vocal 
tract filters. Letting H,(u) = \H,(w)\exp[j$s((j)] denote the composite transfer 
function for these filters, called the system function, then the speech signal at its 
output due to the excitation pulse train at its input can be written as 

L 

s(n) = ^2 \H,(ut)\exp\j(n - n0)u>i + $,(w*)] (4.2) 
i=i 

Using the same measurements of the sine-wave parameters that were provided to 
the pitch estimation algorithm, the current frame of speech that is being analysed 
can be represented by the model 

s(n) = ^2 AiexplJinui + 9t)] (4.3) 
i=i 

The sine-wave amplitudes and phases correpsonding to the values that would have 
been produced by the above glottal and vocal tract models, can then be identified 
as: 

Ai=\Hs(ue)\ 

0z = -now/ + $,(w/) (4-4) 

This identifies the sine-wave amplitudes as samples of the magnitude of the vocal 
tract envelope, hence it should be possible to apply a suitable interpolation func- 
tion so that the envelope can be estimated. One interpolation function would be 
the bandpass interpolator, but this is computationally complex and would make 
real-time implementation of the resulting algorithm difficult. However, it has been 
shown that good approximations to the ideal bandpass interpolator are available 
using cubic spline processing techniques [29], and these methods have been found 
to work well in the context of the sine-wave system provided the cubic spline en- 
velope is fitted to the logarithm of the SEEVOC peaks. In the present context the 
SEEVOC algorithm [28] uses the current measurement of the pitch, denoted here 
by wo, to search for the largest sine-wave amplitude in the interval [<f-, ^f1}. Having 
found the amplitude and frequency ofthat peak, labeled (Ai,u>i), then the interval 
[Wl + ^,a>i + ^f2-] is searched for its largest peak, labeled (A2)w2). The process is 
continued by searching the intervals [o^_i + ^,wz_i + ^] for the largest peaks, 
(At,u>t) until the edge of the speech bandwidth is reached. If no peak is found in a 
search bin, then the value of the short-time Fourier transform magnitude at the bin 
center is used and becomes the point from which the search procedure is continued. 

The principle advantage of this method is the fact that any low-level peaks within 
a harmonic interval will be masked by the largest peak, presumably a peak that 
is close to an underlying harmonic. Moreover, the procedure is not dependent on 
the peaks being harmonic, nor on the exact value of the pitch since the procedure 
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resets itself after each peak has been found. The estimate of the log-magnitude of 
the vocal tract transfer function be taken as the cubic spline fit to the logarithm 
of the sine-wave amplitudes at the frequencies obtained using the SEEVOC peak- 
picking routine. An example of such a fit to typical speech data is shown in fig. 6 
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(b) 

2 
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Figure 6. Cubic spline envelope fitted to the SEEVOC peaks. 

If it is assumed that the vocal tract transfer function is minimum phase, which is 
the same phase model underlying the class of LPC and CELP based vocoders, then 
the magnitude and phase of Hs(tu) can be expressed in terms of a set of cepstral 
coefficients {cm}m=o as [30] 

M 

log \Hs(ui)\ = c0+ 2^2 cm cos(mw) (4.5) 
m — \ 

M 

$s(u) = -2 ^ cm sin(mw) 
m = \ 

1     fW 

— /    log\Hs(w)\cos(mto)dw   m = 0,1, 2,..., M 
T Jo 

In practice, for a 4 kHz speech bandwidth, M > 44 is sufficient for achieving a 
good cepstral fit to the cubic spline envelope. If these results are now substituted 
into eq. (4.2) then, except for the onset time, all of the parameters of the harmonic 
minimum phase speech model are determined and depend only on the cubic spline 
fit to the sine-wave amplitudes. 

Since the function of the onset time is to bring the sine waves into phase at 
times corresponding to the occurrence of a pitch pulse, then rather than attempt to 
estimate the onset time from the data, as was done in [15, 31, 32], it is possible to 
achieve the same perceptual effect simply by keeping track of successive onset times 
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. generated by a succession of pitch periods that are available at the synthesizer. If 
the pitch period is stationary over the synthesis frame, and if n0~ is the onset 
time for frame k — 1 and PQ 

-1 is the pitch period estimated for that frame, then a 
succession of synthetic onset times can be specified by 

-\j) -l+JPt j=l,2,--;J (4.6) 

If nQ-1(J) is the onset time closest to the mid-point between frame k — 1 and frame 
k, then another sequence of onset times that better reflect the phase properties on 
frame k would be given by 

(f) = n*-1{J) + iPg      » = 1,2 (4.7) 

where P$ is the pitch period estimated for frame k. An example of a typical 
sequence of onset times is shown in fig. 7. Also shown is the fact that for high- 
pitched speakers there can be more than one onset time per analysis frame, and 
although any one. of the onset times can be used, in the face of computational errors 
it is best to choose the onset time which is nearest the center of frame k. 

= PITCH PERIOD FOR FRAME i 

= CENTER OF FRAME i 

= ONSET TIME FOR FRAME i 

■CTO 

"o"(2> 

Figure 7. Sequence of onset times computed from successive pitch periods. 

Another way to compute the onset times while accounting for the effects of time- 
varying pitch is to define the phase of the fundamental frequency to be the integral 
of the instantaneous frequency, viz. 

J(k-l)T 
(4.8) 

where w0(t) is the pitch frequency at time t. Since this phase will be monotonically 
increasing with t, a sequence of onset times can be found at the values of t for 
which <^o(«o) = 27rM for integer values of M. If w*-1 and U>Q denote the estimated 
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pitch frequencies on frames k - 1 and k respectively, then a reasonable model for _ 
the frequency variation in going from frame k — 1 to frame k is 

W0(t) = ü,*-1 + ^r^t (4-9) 

which can be used to compute the phase in eq. (4.8) and subsequently the onset 
time. 

If all of the sine waves are harmonically related, then the phase of the i'th sine 
wave is simply £ times the phase of the fundamental which means that the excitation 
sine waves will be in phase for every point in time. This leads to a phase model for 
which it is unnecessary to compute the onset time explicity simply by defining the 
phase offset for the i'th sine wave as i times the phase offset of the fundamental 
evaluated at the center of the current synthesis frame [3, 33]. Using eq. (4.9) in 
eq. (4.8), this phase will be given by 

MkT) = M(k - l)T] + K*-1 + w*)(r/2) (4.10) 

and combining the excitation phase and system phase as in eq. (4.4), the voiced 
speech sine-wave phase for the i'th harmonic becomes 

Zw0) ,(kT) + $s(iw0) (4.11) 

This shows that for voiced speech the sine-wave reconstruction depends only on the 
pitch, and, through the cubic spline envelope, the sine-wave amplitudes. 

4-2.   Unvoiced speech sine-wave model 

If the above phase model is used in place of the measured sine-wave phases the 
synthetic speech is quite natural during voiced speech, but very buzzy during the 
unvoiced segments. On the other hand, if the phases are replaced by unformly 
distributed random variables on [—TT, 7r], then the speech is quite natural during 
unvoiced speech but sounds like whispered speech during the voiced segments. This 
suggests that the phase model in eq. (4.11) be generalized by adding a voicing- 
dependent component which would be zero for voiced speech and random on [—TT, TT] 

for unvoiced speech. However it should be expected that as in standard low-rate 
"buzz/hiss" vocoders such a binary voiced/unvoiced phase model would render the 
sine-wave system overly dependent on the voicing decision causing similar artifacts 
to occur in the synthetic speech when this decision was made erroneously. The 
deleterious effects of the binary decision can be reduced significantly by using a 
more general mixed excitation model of the type proposed by Makhoul, et al., [34]. 
In their model, a voicing transition frequency was estimated below which voiced 
speech was synthesized and above which unvoiced speech was synthesized. Although 
their work was done in the context of a conventional LPC vocoder (periodic impulse 
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train for voiced speech, random noise for unvoiced speech), the concept is ideally 
suited to the sine-wave model, since below the voicing transition frequency, the 
sine-wave phase residuals are made zero, and above the transition they are made 
random [33, 35]. Letting wc denote the voicing-dependent cutoff frequency then the 
unvoiced phase component can be modelled by 

/  N      I       0 if to < uc ,, „  . 

I (7[-7T, 7TJ      if W > Wc 

where U[—ir, ir] denotes a uniformly distributed random variable on [—7r, ir]. If this 
is added to the voiced-speech phase model in eq. (4.11) the complete sine-wave 
phase for the I'th harmonic becomes 

§(£w0) = l<f>0(kT) + $,(tw0) + i(tu0) (4.13) 

To capture the random phase during mixed unvoiced speech the phase model re- 
quires the computation of the voicing-adaptive cutoff frequency wc in eq. (4.12). One 
approach might be to fit the above phase model to the measured sine-wave phases 
while trying to determine the cutoff frequency above which the residual phase be- 
came random. Attempts have been made to do this [31, 15] but the method is 
computational complex and very sensitive to the phase characteristics of the in- 
put audio processing. Based on the analysis in section 3 an alternate measure of 
voicing was obtained that measured the fit of the harmonic set of sine waves to 
the measured set of sine waves. Using this measure, which was called the voicing 
probability Pv, from eq. (3.28), the voicing-dependent cutoff frequency can then be 
estimated as wc(Pv) = irPv. 

Therefore the minimum-phase harmonic sine-wave synthesis model generated us- 
ing parameters estimated for the k'th frame can be summarized as follows: 

L 

Kn) = ^2Äiexp\j(n£w0 + 6t)] 
1=0 

At = |#.(AJ0)| 

tyo(*T)+ $,(&>o) if&j0<wc 
VI = 

i0(kT) + $,(&>,,) + U[-v, TT]    if IOJ0 > wc 

(4.14) 

where |iJs(w)| is the magnitude of the vocal tract tract transfer function and is 
obtained by fitting a cubic spline envelope to the SEEVOC-edited sine-wave am- 
plitudes, $5(w) is the vocal tract phase determined from the vocal tract amplitude 
envelope through the minimum phase assumption and <f>o(kT) is the phase of the 
fundamental at the center of the k'th synthesis frame determined by the phase- 
locking procedure that led to eq. (4.10). The sine-wave phases are made random 
above the voicing-adaptive cutoff frequency, uic = irPv, which is determined by 
the the voicing probability Pv that is a measure of how well the harmonic set of 
sine waves fits the measured set of sine waves and was determined as part of the 
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pitch estimation process in eq. (3.28). As in the basic sine-wave reconstruction sys- 
tem described in section 2, speech is synthesized over contiguous frames using the 
overlap-add algorithm with triangular weighting and this requires that the analysis 
and synthesis procedures be updated at least once per 12.5 ms frame. 

4-3. Postfilttr design 

While the synthetic speech produced by this system was of reasonably good quality, 
a muffling effect could be detected particularly for certain low-pitched speakers. 
Such a quality loss has also been reported in code-excited LPC systems where it has 
been argued that the muffling is due to coder noise in the formant nulls. Techniques 
have been developed for filtering out this noise by passing the synthesized speech 
through a postfilter [36]. Since the synthetic speech produced by the minimum 
phase harmonic sine-wave system has not been quantized, the muffling cannot be 
attributed to quantization noise, but to the front-end analysis that led to the sine- 
wave amplitude representation in the first place. Instead of quantization noise filling 
in the formant nulls, it is speculated that the degradation occurs due to sidelobe 
leakage. Since the Hamming window has a 40 dB sidelobe level, sine waves near the 
formant peaks can easily dominate the formant null reducing the dynamic range of 
a formant peak-to-null to be no more than 40 dB. A variant of the CELP postfilter 
design technique has been developed for sine-wave systems [15, 37] that uses a 
frequency-domain design approach to deepen the formant nulls. That method will 
now be discussed. 

Basically the postfilter is a normalized, compressed version of the spectrally flat- 
tened vocal tract envelope, which when applied to the vocal tract envelope results 
in formants having deeper nulls that in turn result in synthetic speech that is less 
muffled. If T(w) measures the spectral tilt of the vocal tract envelope HS{OJ), then 

represents a spectrally flattened version of it. If F(u) is normalized to have unity 
gain, denoted by F(LJ), then it can be compressed using a root-7 compression rule, 
which defines the postfilter as 

P(w) = [F(w)]7      0<7<1. (4-16) 

A simple model for the spectral tilt is the first-order all-pole model 

TH = V~T <4-17) 1- pexp(-ju) 

where the prediction coefficient p can be determined by applying LPC analysis 
techniques to the synthetic speech waveform in eq. (4.14). It then follows that 
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p = R1/R0j where Ro and Ri are the energy and correlation coefficient of s(n). It 
is easy to show that 

1=1 

L 

Ri = ^2Äjcos(iw0) (4.18) 
i=i 

hence the spectrally flattened sine-wave amplitude for the i'th harmonic, F{£UIQ), 

can be written as 

F(£LO0) 
At 

\T(£u0)\ 
= At 

(l + p2)-2pcos(£w0) 
(4.19) 

The gain, <x, is chosen so that the average power of the spectrally flattened sine-wave 
amplitudes is unity, which requires that 

jJ2 n^o)2 = i = y^Ki+p2) E Äi - 2P E A$ cos(^°)]    (4-2°) 
i=i a        i=i       i=i 

Using the definitions in eq. (4.18) and solving for a leads to 

a2 = ±[(l + p2)R0-2pR1} (4.21) 

After some algebra it is easy to show that the spectrally-flattened sine-wave ampli- 
tudes can be written as 

F(tu0) = M 
L[R2

0 + R\- 2R0R1COS(£UJOJ\ 

Ro(R2o - R\) 
(4.22) 

The post-filter weight at the i'th harmonic is the unity gain spectrally-flattened 
sine-wave amplitude raised to the j power. Letting these weights be denoted by Wt 
it follows that 

~L[Rl - 2J?ii?0 cos(£u}0) + Riy ? 

Wt= [F(^o)V = AJ (4.23) 
Äo(Äg - Ä?) 

where it is noted that L, the number of harmonics is given by the integer value that 
is less than or equal to ir/u>0. In order to insure that excessive spectral shaping is 
not applied to any one sine-wave, clipping rules are introduced such that the final 
post-filter values at each harmonic are 

P(£oJo) = { 

1.2 if We > 1.2 

0.5 if Wt < 0.5 

Wt otherwise 

(4.24) 
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and the post-filtered sine-wave amplitude at the I'th harmonic is then 

At = P{tu0)Ät (4-25) 

In order maintain the correct energy level in the synthetic speech the post-filtered 
amplitudes are replaced by aAi where the scale factor a is chosen such that the 
energy in the post-filtered waveform is the same as that before postfiltering. This 
requires that 

Ro 

z2t=o At 
(4.26) 

It has been observed that sometimes the spectral nulls are reduced at the expense of 
some distortion in the amplitudes at the first formant peak, a problem that would 
not have arisen had the spectral tilt provided a better fit to the formant peaks. An 
alternative to using the first order all-pole model is to fit the cepstral tilt 

log \T(u) | = co + 2ci cos(w) (4.27) 

to the log-sine-wave amplitudes and then repeat the steps described above. While 
this method results in better spectral flattening with less attenuation in the high- 
frequency end producing synthetic speech that sounds closer to the original, it is 
with the introduction of high-frequency artifacts, which overall, are perceptually 
less pleasant. It is clear that more work needs to be done to develop a better 
understanding of the spectral flattening and the post-filtering procedures, but in 
the interim, the postfilter based on the allpole model appears to be the preferred 
approach. 

4-4- Experimental results 

When the voicing-dependent synthetic phase model was used to replace the mea- 
sured phases in the harmonic sine-wave synthesizer, not only was the speech of very 
high quality, but the "synthetic speaker" sounded like the input speaker, i.e. the 
speaker identification properties were preserved. It was particularly notable that the 
synthetic speech did not have the "reverberant" quality reported in other imple- 
mentations of the sine-wave system [56], an effect which arises when the component 
sine waves are not forced to be phase locked. Moreover, the effect of the postfilter 
was to make the synthetic speech sound more crisp, removing the "muffled" quality 
that seems to be inherent in the entire class of low-rate speech coders. 

Comparisons were made using the minimum-phase versus a zero-phase model that 
is used in some implementations of the sine-wave system. In almost all cases, except 
perhaps for very high-pitch speakers, the minimum phase model adds the desired 
dispersive characteristics to the sine-wave phases making the synthetic speech sound 
more natural. This may be particularly important during mixed voiced-unvoiced 
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speech segments, since the inherent randomness of the sine-wave amplitudes is 
transferred to the system phase through the minimum phase assumption. This 
adds randomness to the appropriate sine-wave phases and, hence, more naturalness 
to the synthetic speech. In contrast, the zero-phase system was somewhat more 
muffled and less natural sounding. 

Since the parameters of the minimum-phase harmonic speech model are the pitch 
frequency, the voicing probability and the cubic spline envelope, and since relatively 
few bits would be required to encode the pitch and voicing, the ability to operate 
such a synthesizer at low data rates depends on the number of bits required to 
encode the cubic spline envelope. The development of such an encoding strategy 
will be the topic of the next section. 

5.  Sine-wave amplitude coding using an all-pole model 

So far it has been shown that the post-filtered minimum-phase harmonic model can 
produce synthetic speech having a very high level of quality that would certainly be 
acceptable for operation at low data rates. Since the pitch can be coded using as 6-7 
bits and the voicing probability using m 2-3 bits, then low-rate operation appears 
to be achievable provided the spline envelope can be coded efficiently. Paul [28] 
addressed a similar problem in the development of the spectral envelope estimation 
vocoder (SEEVOC) by treating the spline envelope as a waveform which, by down- 
sampling and low-pass filtering, could be represented with a minimal set of samples 
which were then encoded differentially in frequency. The approach taken in this sec- 
tion is to fit a parametric model to the spline envelope and then code the parameters 
of the model. Previous work using this approach in the context of the sine-wave sys- 
tem has been explored extensively in the context of the cepstral model [15, 37]. The 
advantage of the cepstral representation is that it assumes no constraining model 
shape, except that the spline envelope represent a vocal tract transfer function 
that is minimum phase. Using time-differential and frequency-differential encoding 
methods it was possible to achieve reasonably good performance at 4800 b/s, but at 
2400 b/s the synthetic speech was marginally acceptable. In this section the vocal 
tract transfer function will be further constrained to be minimum phase and all- 
pole. Building on the ideas originally suggested in [37-39], it will be shown that the 
more constrained model leads to quantization rules that are more bit-rate efficient 
than those obtained using the cepstral modeling methods. 

5.1.  The all-pole model 

Although the all-pole model is used implicitly in the class of LPC and CELP based 
coders, the parameters of the model depend on a set of correlation coefficients 
that are computed directly from the time-domain waveform. The problem with this 
approach is that the speech waveform is periodic which renders the correlation func- 
tion periodic. In order to insure that the corresponding spectral envelope does not 
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resolve the underlying sine-wave frequencies, the number of correlation coefficients 
must be restricted to one-half the smallest pitch period. At 8000 Hz sampling, a 
400 Hz pitch has a period of 2.5 ms or 20 samples, thereby limiting the all-pole fit 
to a tenth order model. Such a low model order can cause the envelope to smooth 
the detail in the baseband, distort the speaker identifiability, and lead to a phase 
function that is so structured that, in contrast to the unconstrained minimum-phase 
system, results in synthetic speech that sounds mechanical and buzzy. 

An alternative to the time-domain approach is to use the basic sine-wave system 
to estimate the sine-wave amplitudes and then fit the all-pole model to those ampli- 
tudes. This approach has been studied in the case of voiced speech by McAulay [40] 
who found that it was not possible to obtain a closed form solution for the param- 
eters of the all-pole model except for the case in which the pitch period was much 
greater than the model order. El-Jaroudi and Makhoul [41] also addressed this 
problem and derived a set of nonlinear equations whose solution also required use 
of iterative techniques. It will now be shown that these problems can be avoided if 
the all-pole model is fitted to the cubic spline envelope rather than to the sine-wave 
amplitudes. 

5.2.  Computation of the parameters of the all-pole model 

The next step is to develop an analytical method for computing the parameters of 
the all-pole model such that its magnitude is a best fit to the spline approximation 
to the vocal tract envelope. Letting Ha(w) represent the transfer function of the 
all-pole model then 

Ha(w) = 
A(U;DL) 

P 

A(uj;a) = l-^2akexp(-jkui) (5-1) 
fc=i 

where a and a = (ax, a2,..., ap) are the parameters to estimated. Since the ear 
responds logarithmically to the sine-wave amplitudes, a criterion that is well-suited 
to the speech application is to minimize the average dB error. Letting 

E(w) = log\H,(u)\2 - log\Ha(uj)\2 (5-2) 

denote the error between the measured and the modeled sine-wave amplitude en- 
velopes, then a reasonable approach might be to pick a and a to minimize the 
average error 

e(<r,a)=i f E2{Lo)duj (5-3) 
7T JO 

Unfortunately it is not possible to obtain an analytically tractable closed-form 
expression for the optimizing values of the all-pole parameters. However if the 
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symmetric squared-error criterion is modified to allow for an asymmetry of the 
form, 

e(<r, a) = - i [exp E{u) - E{w) - l]dw (5.4) 
1" Jo 

then a closed-form solution is possible. Using eq. (5.1) in eq. (5.2) the logarithmic 
error can be written as 

E(u>) = log 
|ff.(w)A(w)|2 

(5.5) 

and then the error criterion in eq. (5.4) becomes 

c(ffia)=ir [ig'H^)i2_log|gj(t,M(h))|2+Iog(r2 _ 1]du 
7T Jo °~ 

(5.6) 

By differentiating eq. (5.6) with respect to <r it is easy to show that its optimum 
value, <r, is given by 

<r2 = - /^ \H,(w)A(u)\2du (5.7) 
T Jo 

and if this optimizing value is then substituted back into eq. (5.6) the resulting 
error is given by 

e(a) = - /^ \Hs(oj)A(w)\2du (5.8) 
1" Jo 

If this expression is differentiated with respect to each of the coefficients, a^, it is 
also easy to show that their optimum values, a^, satisfy the equations 

p 

^Äj-fcäjfe = Rj    j = l,...,p 

*=i 

Rk = - T \Hs(w)\2 cos(kw)dw (5.9) 
1" Jo 

The latter set of equations can be recognized as the normal equations that arise 
in the time-domain solution for the linear predictor coefficients where in that case, 
Rk represents the kth time-domain correlation coefficient. By performing the anal- 
ysis using frequency-domain data, the Rk in eq. (5.9) can also be interpreted as 
correlation coefficients, but they are now computed from the cubic spline fit to the 
magnitude of the vocal tract transfer function. 
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Of course it will have been recognized that the above solution is simply a gen- 
eralization of the analysis developed by Itakura and Saito [42] for finding the 
maximum likelihood estimate of the power spectral density for Gaussian processes 
and that the error metric in eq. (5.4) is the so-called Itakura-Saito spectral match- 
ing criterion [43]. The above frequency-domain analysis has several advantages: it 
applies both to voiced and unvoiced speech, it removes the dependency on pitch 
and it allows for the use of very high order models, which, in the limit, can track 
the spline envelope exactly. Moreover it gives a precise expression for the gain, 
a, which applies regardless of the voicing state. Such a "clean" definition of the 
gain has always proved elusive in the time-domain analysis since the application 
of the autoregressive model to periodic voiced speech is not theoretically correct. 
Moreover, the estimated parameters, ä, are functionally the same as the predictor 
coefficients that arise in the time-domain analysis, hence all of the techniques used 
in linear prediction analysis can be applied to the parameters of the all-pole model. 
For example, the matrix equation in eq. (5.9) is Toeplitz, hence its solution can be 
readily obtained using the Levinson-Durbin algorithm. Finally, the alternate repre- 
sentations for the frequency-domain "predictor coefficients", such as the reflection 
coefficients or the line spectral frequencies, can also be applied to these all-pole 
parameters so that the scalar and vector quantization techniques conventionally 
employed in LPC- or CELP-based systems can be applied to efficiently encode the 
parameters of the all-pole model. This topic will be addressed in more detail later in 
this section. The result of fitting 10'th and 22'nd order all-pole models to the cubic 
spline envelope are shown in fig 8. A sine-wave synthesis system was developed for 
all-pole models of arbitrary order by computing a set of sine-wave amplitudes and 
a set of sine-wave system phases by taking the harmonic samples of the magnitude 
and phase of the reconstructed all-pole transfer function. In conjunction with the 
pitch-dependent, linear-phase model and the voicing-adaptive random phases, the 
quality of the synthetic speech was quite good, in many cases almost equivalent 
to the original minimum phase system provided the model order was p > 22. By 
comparison, if the model order was set to be p = 10, then the synthetic speech 
was mechanical and buzzy, having the same general quality of a basic 10'th order 
LPC system. This shows that the phase randomization controlled by the estimate 
of the voicing probability is, in itself, insufficient to capture all of the voicing infor- 
mation implicit in the sine-wave data. In fact it appears that there is considerable 
voicing information contained in the sine-wave amplitudes which is most effectively 
transferred to the synthetic speech through the phase of the all-pole model. More 
precisely it is the time-rate-of-change of the system phase that imparts a more 
natural sound to the synthetic speech and is a major consideration in keeping the 
frame-rate for the all-pole model high, as close to about 15 ms as possible. Although 
it is possible to code a high-order all-pole model adequately at 4800 b/s, encoding 
such a system at 2400 b/s is difficult since the number of bits per parameter would 
be too low to ensure good quality speech. Therefore, it is desirable to reduce the 
model order as much as possible without introducing the mechanical, buzzy quality. 
This can be done using the notion of spectral warping, a topic that will be discussed 
in the next section. 
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Figure 8. Comparison of 10'th and 22'nd order allpole fits to the spline envelope. 

5.3. Spectral warping 

It is well-known that the ear is less sensitive to details in the sine-wave amplitudes 
at higher frequencies than at lower frequencies, a property which has been exploited 
extensively in the past by frequency-domain coders such as the phase vocoder and 
the channel vocoder [44]. Generally the bandwidth of the filters in these systems 
is increased logarithmically to maintain a constant Q, similar to the cochlear filters 
that approximate the front-end of the hearing mechanism. These so-called critical 
bandwidths can be approximated analytically using the bark scale or the mel scale. 
If u' represents the perceptual scale, then the relationship between the perceptual 
scale and the frequency scale can be written as w' = W(u) for some warping 
function W. One way to exploit the perceptual warping property is to map the 
measured vocal tract envelope onto the perceptual scale and then fit the all-pole 
model to this warped envelope. The sine-wave amplitude and system phase at a 
given frequency u can then be found by sampling the magnitude and phase of the 
warped all-pole transfer function on the perceptual scale at W(u>). 

Although the standard perceptually-based warping functions, such as the mel 
scale or the bark scale, could be used, a more general procedure was developed 
to allow for more flexibility in designing the coder at a multiplicity of bit rates. 
In particular, it is desired to maintain a linear mapping at least within the region 
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of the first formant (> 800 Hz) with a logarithmic mapping in the high-frequency 
region, a relationship which can be described parametrically as 

W(u>) = alog(l + ßoj) (5.10) 

A warping function that has been found to work well for the 2400 b/s and 4800 
b/s systems uses a = 170 and ß = .554. A typical example of a cubic spline envelope 
fitted to the measured sine-wave amplitudes and plotted on the linear frequency 
scale is shown in fig. 9(b). Fig. 9(c) shows the result of plotting the cubic spline 
envelope on the warped scale. An example of fitting a 14'th order all-pole model to 
the warped spline envelope is shown in fig. 9(c). The envelope of the all-pole model 
that was fitted on the warped scale but plotted on the original frequency scale is 
shown in fig. 9(d). Usually there is some loss of detail at high frequencies. When 
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Figure 9. Example of a 14'th order allpole fit to the warped spline envelope. 

the 14'th order warped all-pole model was used in place of the cubic spline envelope 
in the minimum-phase harmonic sine-wave synthesis system, little degradation in 
the quality of the synthetic speech was perceived. If no warping was used, the 
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.synthetic speech took on a mechanical constrained quality which was particularly 
pronounced for certain speakers. On the other hand, there were some speakers for 
which no difference could be perceived. The next step is to develop the quantization 
rules for encoding the parameters of the warped all-pole model, a topic which will 
now be addressed. 

5-4-  Quantization of the parameters of the all-pole model 

It has been established that synthetic speech of good quality is possible by encoding 
the sine-wave amplitudes in terms of the parameters of the all-pole model. There- 
fore good digital speech communications is possible provided the gain, a and the 
"predictor coefficients" äj., a2,..., ap can be efficiently quantized. One way to encode 
the gain is to quantize log a uniformly over about a 60-90 dB dynamic range. Al- 
lowing for a 1 dB quantization noise, this requires about 6 bits per frame update. 
Since it is desirable to operate at a 15 ms frame-rate, this quantization scheme, 
while acceptable at the 4800 b/s rate, expends too many bits at the 2400 b/s rate. 
In the latter case it has been found useful to use a simple predictor and quantize 
the prediction residual. If g(k) — logo- is the measured gain for the k'ih frame and 
if g(k — 1) is the decoded gain for the (k - l)'st frame, then the decoded gain for 
frame k, g(k) is 

~g(k) = ag(k - 1) + Q[g{k) - ag(k - 1)] (5.11) 

where a is the gain prediction coefficient (w .7). and Q[-] represents an appropriately 
designed nonlinear quantization table. This method has been found to give good 
results using about 4 bits to quantize the residual gain. 

The next step is to quantize the "predictor coefficients", but as has been found 
in time-domain LPC it is better to work with a transformation of these coefficients 
rather than try to encode them directly. Drawing upon the significant body of 
research in this area the "predictor coefficients" are transformed to the line spectral 
frequencies (LSFs) and these can be either scalar-quantized or vector-quantized 
using standard methods. However, due to the complexity of implementing a vector- 
quantized set of LSFs for the higher-order all-pole models, the focus has been 
mainly to exploit the properties of the differential LSFs as described by Soong and 
Juang [45]. Their design methods have been applied to LSF data gathered for a 
number of model orders for all-pole models that were fitted on the warped frequency 
scale.2. 

Since it typically takes about 3 bits per LSF on average, a 14'th order all-pole 
model would require about 42 bits to achieve a reasonable level of performance. 
While it is not a problem to encode this many bits at 4800 b/s, at 2400 b/s it 
requires that a frame rate of about 30 ms be used. In all of the experiments reported 

2  The authors are indebted to J.L.Trent and T.G.Champion for their work in developing the 
design software and in generating a multitude of quantization tables 
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in this chapter, good quality synthetic speech required that the frame rate be about 
15 ms. Therefore there arises a basic incompatibility in encoding the all-pole model 
at the lower data rate. While it is possible to devise means for encoding the pitch, 
voicing and gain for operation at this data rate using the 15 ms frame rate, it is 
obvious that some additional property needs to be exploited to encode the shape of 
the all-pole spectrum with the required temporal fidelity. One way to approximate 
the desired temporal resolution is to use the McLarnen frame-fill algorithm  [46]. 

5.5. Frame-fill interpolation 

A simple and straightforward approach to reducing the transmission bandwidth is 
to transmit the spectral data for every second frame, using some control information 
to instruct the synthesizer how to reconstruct (or "fill-in") the missing information. 
A set of rules that has been found to be quite useful is simply to compare the 
spectral data for the frame to be omitted to the quantized spectral data on the 
preceding and succeeding frames. The data that "best" represents the mid-frame 
spectral shape is determined, and one bit can be used to signal the decision to 
the receiver. An additional bit can be used to allow for candidate fits that are 
interpolated values of the end-point data. Therefore, in the present context two 
bits are used, allowing for four frame-fill options   [46]. 

If 5jfe_i(w) and Sjt+i(w) represent the quantized gain-normalized spectral shapes 
on frame k - 1 and frame k + 1, then the four frame-fill options are: 

logSl(oj) = log§k-i(u) 

logSl(u)) = logSk+i(u) 

logSl(ui) = .5 log§k-i(u) + -5 logSk+1(uj) 

logSi{u) = .333 logSk-!(w) + .667 logSk+1{w) (5.12) 

If Sjb(w) represents the unquantized gain-normalized spectral shape at frame k, 
then a reasonable measure of the error when each of the frame-fill options is used 
is given by the squared-log-error criterion: 

d(Si,Sk) = - f[logS[{u) - logSk(w)]2du>      i = 1,2,3,4 (5.13) 
"" Jo 

and the frame-fill spectral shape, Sk(uj) is determined for the condition resulting in 
the smallest value of d(). Ideally the frame-fill decision should be made comparing 
the actual vocal tract shapes, but as the computation of the envelope of the all-pole 
model adds considerable complexity to a practical implementation, an approximate 
spectral decision criterion is used. Since the LSFs evolve relatively smoothly in time, 
it is not unreasonable to base the frame-fill options on interpolated values of the 
quantized LSFs. Letting u - (wi,w2, ...,wp) denote the vector of LSFs, and letting 
wjfc_i and Wfc+i denote the quantized LSFs on frames k - 1 and k + l respectively, 
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then the four frame-fill options can be written as 

uk =ük+i 

Wj! = .5 LJk-l + -öWjfc + l 

wf = .333wfc_i + .667wi+i (5.14) 

Drawing on the work of Paliwal and Atal [47] in the context of selecting the best 
codeword for an LSF-based vector quantizer, a reasonable criterion for picking 
the best frame-fill option is the minimze the weighted squared LSF-error. If ük = 
(wi,ü>2, • • -,wp) represents the unquantized LSF vector at frame k, then the error 
in using each of the frame-fill vectors can be measured using the criterion 

p 

d(ü>\,ük) =  E ^K0(Wm - Um? (5.15) 
m=l 

where the weighting term is computed by sampling a compressed value of the cubic 
spline envelope at each of the measured frame-fc LSF frequencies. Since the LSFs 
represent the all-pole model on the warped scale, the weighting must be computed 
for the spline envelope that is also on the warped scale. Therefore, the weights are 

W{um) = \Ht[W(u>mW (5-16) 

where the compression factor, j ?a .5. 
In the above application of the frame-fill algorithm the four options were applied 

over the entire speech bandwidth. At low data rates where only two bits might 
be available for the frame-fill option, this may be the only feasible alternative for 
estimating the mid-frame spectral shape. However if two additional bits could be 
made available through more efficient spectral coding, for example, then the speech 
bandwidth could be split in half and two sets of frame-fill decisions could be used. 
This idea can be extended to allow for a multiplicity of spectral bands and this 
would allow for better tracking of the individual formant bandwidths. An extreme 
case was to apply the frame-fill option to each of the p LSFs. In this test the 
synthetic speech had the same lively, natural quality that was obtained using the 
unquantized spectral shape at the 15 ms frame rate. 

5.6. Experimental results 

Using the techniques described in the previous sections low-rate coders were devel- 
oped at 4800 b/s and 2400 b/s data rates using measurements of the pitch, voicing, 
gain, and LSFs that were made every 15 ms. At 4800 b/s the pitch (7 bits), voic- 
ing (3 bits) and gain (6 bits) were encoded at the 15 ms rate, but the LSFs were 
encoded only once per 30 ms outer frame using multiband frame-fill to provide 
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the amplitude information at the inner frame rate. For a 14th order system, the 
frame-fill technique was applied to each of the LSFs using 28 bits. The remaining 
bits were used to encode the frequency-differential LSFs using scalar quantization. 

At 2400 b/s the pitch was coded on the 30 ms outer frame using 6 bits, and 
one frame-fill bit was used to encode the pitch on the inner frame. The voicing 
probability was encoded on the 15 ms inner frame with 2 bits per inner frame. The 
gain was coded differentially on the 15 ms inner frame using 4 bits per frame. Only 
2 bits were assigned to frame-fill the LSFs and the remaining bits were used to 
encode the frequency-differential LSFs using scalar quantization. 

Since the overlap-add technique is used to perform the sine-wave speech synthesis, 
the 15 ms inner frame size would correspond to a 30 ms interpolation window. This 
is too wide to give good perceptual results. Therefore the synthesizer framing was 
further divided into two 7.5 ms sub-frames per 15 ms inner frames. The sine-wave 
parameters for the sub-frames were obtained by interpolating the pitch, voicing, 
gain and amplitude envelopes obtained for the 15 ms inner frame. It is important 
to note that the voicing-adaptive phase model was applied at the 7.5 ms sub-frame 
rate as this allowed for more randomization of the unvoiced phases which also results 
in synthetic speech that was more pleasant to listen to. The above coder has come 
to be referred to as the sinusoidal transform coder (STC). 

The 2400 b/s version of STC is one of the vocoders to be evaluated in September 
1995 as a candidate for a new U.S. Government standard to replace the LPClOe 
algorithm. The system was evaluated in a pre-selection test in June of 1994 in 
comparison with Federal Standard 1016 CELP algorithm at 4800 b/s. Its MOS, 
DAM and DRT scores are given in table 1 [48] 

Table 1. 

condition STC  2400 b/s CELP  4800 b/s 

quiet 3.525 MOS 3.592 MOS 

office noise 3.021 MOS 2.938 MOS 

quiet 65.3 DAM 63.1 DAM 

quiet 90.9 DRT 92.8 DRT 

There is, at this time, no similar comparisons of the performance of the 4800 b/s 
STC to either the CELP coder or to STC at 2400 b/s. However, in 1992, the 
4800 b/s cepstral-based version of STC was evaluated in the TIA Half-Rate Dig- 
ital Cellular preselection test and its performance, along with two other coders, 
was deemed to belong to the same equivalence class as the 8000 b/s VSELP algo- 
rithm [49]. Currently the major focus of the 4800 b/s system is in its application to 
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the development of an applique for the Secure Telephone Unit (STU-III) for secure, 
multi-speaker conferencing. This topic will now be discussed. 

5.7. Multi-speaker conferencing 

One of the most important features in facilitating speech conferencing is to allow for 
speaker interruption as then the control of the conference can move naturally among 
all conferees. In analog or wide-band digital conferencing a speaker interrupt, which 
corresponds to two speakers talking simultaneously, is handled by signal summation 
at a conferencing bridge. Such a scheme is not possible for digital speech coders as 
these would require synthesis and reanalysis of the aggregate speech signal, a process 
called tandeming which almost always results in a severe loss in quality even if only 
a single speaker is talking. Further degradations occur during a speaker interrupt 
since most low-rate coders are designed to model only a single voice. 

A technique that has been developed collaboratively amongst Rome Laboratories, 
Lincoln Laboratories and ARCON Inc., defers signal summation to the synthesis 
terminal by adaptively allocating the available bandwidth based on the number of 
active talkers [50]. Since during most of the conference there will only be a single 
speaker talking at any one time, the quality of the speech will be maintained at the 
highest level since the single speaker is always encoded at the highest rate. When 
there are two speakers present, each speaker is allocated one-half of the bandwidth, 
and although the quality of the individual speakers will be somewhat reduced, 
intelligibility of the two speakers will be preserved. Overall there will be a more 
natural contention for the conference control. 

A critical component in this conferencing system is in the bridge which controls 
signal routing and bit-rate reduction on those parameter sets when a two-speaker 
overlap has occurred. When there is only one active speaker, all conferees (except 
the active speaker) receive the same set of parameters at the highest rate. When 
there are two active speakers, each speaker receives the other speaker's parameters 
at the highest rate, while the passive listeners receive the parameters sets of the 
two active speakers, each transformed to the lower rate. 

It is the dynamic multirate capability of STC that lends itself naturally to the 
implementation of this transformation process. Since the coder depends only on 
pitch, voicing, gain and LSFs it is not necessary to synthesize the speech and re- 
peat the analysis for operation at the lower rate. Rather the parameters are decoded 
at the higher rate and then encoded using quantization tables that were designed 
for operation at the lower rate. Moreover, the use of STC makes possible a simple 
technique for implementing the double-speaker signal summation since the sum- 
mation can be done in the sine-wave domain prior to synthesis, greatly reducing 
the computational complexity of the synthesizer. Using the overlap-add sine-wave 
synthesis technique the pitch, voicing and spectral parameters are used to compute 
the amplitudes, frequencies and phases of the underlying sine waves, and these are 
used to fill the complex DFT buffer at the sine-wave frequencies. The speech wave- 
form is obtained from the inverse DFT. With two speakers, the two sets of complex 
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parameters are added in the complex transform domain before taking the inverse 
transform. In this way the synthesis of two speakers involves only slightly more 
computation than for one speaker. 

At Rome Laboratories a conferencing system based on the above signal processing 
ideas has been implemented in real-time. The bridge can handle up to four conferees 
with two speakers active at any one time using 4800 b/s at the highest rate for a 
single speaker and 2400 b/s for the two-speaker overlap. The system has been 
tested extensively using both quiet and noisy conditions that include the Airborne 
Commmand Post and the F15 fighter cockpit environments. It has been found to 
provide digital speech of very high quality and allows for a natural flow of the 
conference control while being robust under adverse noise conditions. 

6.  Improved multi-band excitation vocoder 

One of the more successful applications of the sine-wave modeling technique to 
low-rate speech coding is the improved multi-band excitation (IMBE) speech coder. 
Versions of this coder have been chosen as standards for the INMARSAT-M system 
in 1990 [51], the APCO/NASTD/Fed Project 25 in 1992 [52] and the INMARSAT- 
Mini-M system in 1994 [53]. The latter system demonstrated performance at a gross 
rate of 4800 b/s that was at least as good as that achieved by the full-rate digital 
IS-54 standard VSELP algorithm operating at 8000 b/s in a multitude of categories 
including acoustic noise and channel errors. It is currently under consideration for 
a number of emerging digital communications systems including PCS and cellu- 
lar radio. Since detailed description of the techniques used in IMBE are readily 
available in the Inmarsat and APCO specifications as well as in the recent book 
by Kondoz [14] the discussion in this section will be more theoretical showing the 
similarities and differences of IMBE versus the generic sine-wave coding methods 
described earlier in this chapter. 

6.1: Harmonic sine-wave model 

The starting point for the original multi-band excitation (MBE) speech coder de- 
veloped by Griffin and Lim [10] was to represent speech as a sum of harmonic sine 
waves. As in eq. (3.2) in section 3, the synthetic waveform for a harmonic set of 
sine waves is written as 

s(n)- ^2 Äiex-p(jn£u!0 +<f>t) (6-1) 

Whereas in section 3.2 the sine-wave amplitudes were assumed to be harmonic 
samples of an underlying vocal tract envelope, in MBE they are allowed to be un- 
constrained free variables and are chosen to render s(n) a minimum-mean-squared- 
error fit to the measured speech signal s(n). In MBE the error is measured using 
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windowed versions of the speech signals where the windowing functions are more 
general than the rectangular window that was used in section 3. Letting the win- 
dow function be w(n), which typically might be a Hamming window or a Kaiser 
window, the weighted speech signals are sw(n) = w(n)s(n) and sw(n) = w(n)s(n) 
and the mean-squared-error is given by 

N 

e(u>0,A,<j>)=J2\sw(n)-sw(n)\2 (6.2) 
-N 

where A = (A1,A2,---,AL^0-)) and <j> = (</>i, <f>2, ■ ■ ■, 4>L{U0)) are the vectors of 
unknown amplitudes and phases at the sine-wave harmonics. If 

Sw{u) = /    sw(n)exp(-jnu>)dw (6.3) 
J — w 

denotes the discrete-time Fourier transform of sw(n) and Sw(u) denotes the 
discrete-time Fourier transform of sw(n), then using Parseval's theorem, eq. (6.2) 
becomes 

e(w0,A,<f>) = | Sw(u) -Sw(u) |2 dui 
J — w 

= r U Sw(w) |2 -2Re [sw(w)S*w(w)\ + \ Sw(w) |2} du (6.4) 
J — IT 

The first term, which is independent of the pitch, amplitude, and phase parameters, 
is the energy in the windowed speech signal, Ew. Letting at = At exp(j<^) represent 
the complex amplitude of the £th harmonic and using the sine-wave decomposition 
in eq. (6.1), SW((J) can be written as 

L(ui0) 

Sw(u)= J2 <*iW(u-te>0) (6.5) 
t=\ 

where W(u) is the Discrete-time Fourier Transform of the windowing function w(n). 
Substituting this relation into eq. (6.4), the mean-squared-error can be written as 

L(u>o) 

e(w0, A, <t>) = Ew- 2Re ^ a*t /    Sw(u)W(u)du 

L(wo)L(w0) .„• 

+ J2   Yl ai°*™ I    W^ ~ £U)
O)W(UJ - muj0)du (6.6) 

zi_i       ™_1 J — TT £=1    m=l 
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Since for each value of w0 this equation is quadratic in at, it is straightfor- 
ward to solve for the a(w0) that results in the minimum the mean-squared error, 
e(wo,6/a(wo)). This process can be repeated for each value of w0 such that the 
optimum minimum-mean-squared-error estimate of the pitch can be determined. 
Although the quadratic optimization problem is straigh-forward to solve, it re- 
quires solution of a simultaneous set of linear equations that have to be solved for 
each candidate pitch value. This renders the resulting pitch estimator complex to 
implement. However, following [10], if it is assumed that W(u>) is essentially zero 
in the region | w |> wo/2, which corresponds to the condition posed in section 3 to 
insure that the sine-waves are well-resolved, and if 

üt = {to : £uj0 - UJO/2 < u  < iui0 + w/2} (6.7) 

then the mean-squared-error can be approximated as 

e(w0, A, <f) = Ew- 2Re ^ a\ I   Sw(tü)W(w)duj 

L(w0) , 

+ V  \at\
2  I   W2{w - £io0)duj 

t=i Ja" 

from which it follows that the value of the complex amplitude that minimizes the 
mean-square-error is 

The best mean-squared-error fit to the windowed speech data is then given by 

L(u>o) 

sw(u;"o)= J2 M<"O)W(W-&J0) (6.io) 
t=i 

where the dependence on the specified pitch, u0, is now made explicit. This expres- 
sion is then used in eq. (6.2) to evaluate the mean-squared-error for the given value 
of w0- This procedure is then repeated for each value of w0 in the pitch range of 
interest and the optimum estimate of the pitch is the value of w0 that minimizes 
the mean-squared-error. 

While the procedure is similar to that used in section 3, there are important 
differences. For one thing, the use of the unconstrained amplitude estimates will 
render the MBE pitch estimator ambiguous at the multiples of the pitch period and 
heuristic methods must be used to remove the ambiguity. For another, the procedure 
depends on the Discrete-time Fourier Transform of the windowed speech signals 
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and hence it is not possible to introduce perceptually-based amplitude compression 
that is often needed to compensate for the large dynamic range of neighboring sine 
waves. Finally, because the estimator depends on the phase of the Discrete-time 
Fourier Transform over each harmonic lobe, the resulting amplitude estimates can 
often be meaningless. In fact in the MBE systems, the above amplitude estimates 
are not used to model the sine-wave amplitudes but only to estimate the pitch and 
voicing. The errors in the amplitudes are probably due to the fact that the phase of 
the Discrete-time Fourier Transform is not always constant across every harmonic 
lobe as is assumed in the above formulation of the estimation problem. 

While the implementation of the MBE pitch estimation algorithm is intensive, 
even after the approximations introduced in the above analysis, modifications have 
been developed to reduce the complexity significantly [14]. In practice a two-step 
procedure is used in which baseband speech out to about 1000 Hz is used in a corre- 
lation pitch estimator using a 37.5 ms Kaiser window to develop a coarse estimate of 
the pitch. Forward-backward pitch tracking is used to maintain a meaningful pitch 
track during regions in which the pitch and/or vocal tract are rapidly changing. 
Then a 27.5 ms Kaiser window is applied to full-band speech data and the above 
algorithm is used to refine the pitch estimate according to equations  6.9-6.10. 

6.2. Multi-band voicing 

The next step in the MBE algorithm is to distinguish between regions of voiced 
and unvoiced sine waves. As was done in section 3 this is based on how well the 
harmonic set of sine waves fits the measured set of sine waves. In section 3 a signal- 
to-noise ratio (SNR) was defined in terms of the normalized mean-squared-error, 
eq. (3.27) and this was mapped into a cutoff frequency below which the sine waves 
were declared voiced and above which they were declared unvoiced. This idea, 
which originated with the work of Makhoul et al. [34], was generalized by Griffin 
and Lim [10] to allow for an arbitrary sequence of voiced and unvoiced bands with 
the measure of voicing in each of the bands determined by the normalized mean- 
squared-error computed for the windowed speech signals. Letting 

Bm — {LO : wm_i < w < wm} m — 1,2, ■••,M (6-H) 

denote the rath band of a multiband of M regions of the speech bandwidth, then 
using eq. (6.4), the normalizing mean-squared-error for each band can be written 
as 

€mio) ~ /*.!*. HP (6-12) 

Each of the M values of the normalized mean-squared-error is compared with a 
threshold function to determine the binary voicing state of the sine waves in each 
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band. If em(w0) is below the threshold, the mean-squared error is small, hence the 
harmonic sine waves fit well to the input speech and the band is declared voiced. 
The setting of the threshold is very important and MBE uses several heuristic rules 
to get the best performance. The most recent set of rules given in [14] shows the 
threshold decreasing with frequency, decreasing if on the previous frame the band 
was unvoiced, decreasing if the high-frequency energy exceeds the low-frequency 
energy, and decreasing if the speech energy approaches the energy of the background 
noise. In other words, every effort is made to favor an unvoiced declaration, an 
observation that has been confirmed by experiments that show that without the 
high-low energy measure and the comparison against the background noise level, the 
synthetic speech produced by MBE is very buzzy. In another set of experiments, the 
multiband voicing decisions were combined into a two-band voicing-adaptive cutoff 
frequency as was used in section 4 and no loss is quality was perceived. This was 
confirmed by an independent set of experiments reported in the literature [14, 54]. 
Apparently the advantage of multiband voicing lies not with its ability to mix voiced 
and unvoiced states throughout the speech bandwidth, but rather to make reliable 
voicing decisions when the speech signal has been corrupted by additive acoustical 
noise and deleterious spectral shaping such as when an IRS filter is used. The 
reason for this lies in the fact that the normalized mean-squared-error essentially 
removes the effect of the spectral tilt which means that the sine-wave amplitudes 
contribute more or less equally from band to band. When one wide-band voicing 
decision is made, only the largest sine-wave amplitudes will contribute to the mean- 
squared-error, and if these have been corrupted due to IRS filtering or noise, then 
the remaining sine-waves, although harmonic, may not contribute enough to the 
error measure to offset those that have been altered by the front end processing. 

6.3. Sine-wave amplitude model 

Since the amplitudes that were computed during the pitch estimation process prove 
to be poor representations of the underlying sine-wave amplitudes, IMBE uses a 
different method to estimate them. Since the pitch has been determined, the model 
for the Discrete-time Fourier Transform of the harmonic sine-wave speech model 
within the region üt of the £th harmonic can be written explicitly as 

Sw(ü0) = Aiexp(j<l>i)W(w-£u>o) for u in O.e. (6.13) 

In MBE the amplitude is chosen such that over each harmonic region, Qt, the 
energy in the model matches in the measured energy. This leads to the amplitude 
estimator 

Ai = (6.14) 
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An additional processing step is required before the sine-wave amplitude data is 
presented to the synthesizer. In the later versions of MBE [14] this is referred to as 
"Spectral Amplitude Enhancement" which is another term for the post-filtering op- 
eration that is used in almost all contemporary low-rate coders. In fact the method 
used in the MBE systems is based on the frequency-domain design principles in- 
troduced by McAulay and Quatieri [37] and described in detail in in section 4. If 
the post-filter weights in eq. (4.23) are evaluated using a compression factor j = .5, 
they become 

Wt 
■w[Rl - 2Ä1ÄQ cos(^wo) + Rl] 

w0Äo(Äg - R\) 
(6.15) 

where use has been made of the fact that L = TT/COQ is the number of harmon- 
ics in the speech bandwidth. These can be identified as the same weights given 
in the Inmarsat [51] and APCO [52] specifications. The idea of clipping the post- 
filter weights, eq. (4.24), which was first introduced in the Inmarsat system and 
later refined in the APCO system, has proven to be an useful modification to the 
frequency-domain post-filtering technique as it allows for a more relaxed compres- 
sion factor which in turn sharpens the formant bandwidths leading to synthetic 
speech which is much crisper. 

6-4- Sine-wave phase model and voiced-speech synthesis 

In MBE two distinct methods are used to synthesize voiced and unvoiced speech. 
Basically voiced speech is generated using the overlap-add method described in 
section 3 with the exception that if the pitch on successive frames does not change 
by more than 10% then the first eight sine-waves will be matched and the phases 
will be interpolated using a function that maintains phase continuity at the frame 
boundaries at the expense of a slight discontinuity in the frequencies. This is a 
simplification of the cubic phase interpolation technique that was described in [3, 8]. 
Apparently the latter condition is needed to allow the MBE synthesizer to run at a 
fixed 20 ms frame rate since otherwise the sine-wave parameters can become non- 
stationary over the duration of the overlap-add window, an effect that seems to be 
particularly important for some high-pitched speakers. This problem is avoided in 
STC at the expense of adding some complexity to the synthesizer by interpolating 
the the sine-wave parameters to FS 10 ms frame size and then repeating the overlap- 
add procedure at the faster frame rate. 

For the all of the voiced sinewaves it is necessary to specify the phases at the 
frame boundaries. In the MBE the phases were coded differentially in time and 
even at 8 kb/s not all the phases could be coded for some low-pitched speakers. The 
uncoded phases were made random and this gave the synthetic speech a reverberant 
quality. Although improvements in the efficiency of the phase coder were made, 
arbitrary phase randomization was needed for some of the phases for some low- 
pitched speakers and reverberation continued to be a problem [56]. Then after the 
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sine-wave phase model was described in [3] and again in [37], the coherent excitation 
phase model was incorporated into IMBE [51, 52] and the reverberation problem 
was eliminated. Therefore the synthetic phase model used in the latest versions of 
IMBE use the excitation phase model described in section 4 in which the phase of 
the fundamental is the integral of the instantaneous pitch frequency and then the 
phase of the Ith harmonic is £ times the phase of the fundamental. 

It should be noted that neither the Inmarsat nor the APCO versions of IMBE 
make use of the vocal tract phase, using instead a simple zero-phase model. In STC 
the minimum-phase phase is essential as it adds more naturalness and crispness 
to the synthetic speech. Whether the addition of the minimum-phase phase to the 
IMBE synthesis system would improve the quality of the synthetic speech in the 
same way is, as yet, an open question. 

6.5.   Unvoiced synthesis 

For those speech bands for which the sine waves have been declared unvoiced, MBE 
synthesis is done using filtered white noise. Care needs to be taken to insure that the 
effects of the analysis and synthesis windows have been removed so that the correct 
synthesis noise level is achieved. The details of the normalization procedures are 
given in [14]. This approach to unvoiced synthesis is in contrast to STC which uses 
random phases in the unvoiced regions. The advantage of using random phases 
is.that the synthesizer is simpler to implement as exactly the same operations 
are performed for voiced and unvoiced speech. This happens to be particularly 
advantageous in applications that exploit the multirate capabilities of STC [50, 58]. 

6.6. Sine-wave parameter coding 

In order to operate MBE as a speech coder the pitch, voicing and sine-wave ampli- 
tudes need to be quantized. It is in the latter operation that IMBE distinguishes 
itself from MBE and STC. In the latest published version of MBE [55, 56], a set of 
time-differential sine-wave amplitudes was computed and clustered into frequency 
bands. The correlation between the residual amplitudes within a band was fur- 
ther reduced using the discrete cosine transform (DCT) and these coefficients were 
quantized using a non-adaptive bit allocation strategy. Then in [57] a significant 
performance improvement was claimed using an adaptive bit-allocation strategy 
and the multi-band excitation (MBE) coder became the improved multiband exci- 
tation (IMBE) coder. Apparently the improved performance of IMBE versus MBE 
came from tuning the bit-allocation rules to the pitch. This was probably particu- 
larly important since the the quantization of the clusters of the residual amplitudes 
in each of the frequency bands would then be well-matched to the movement of the 
individual formants. It should also be noted that the published version of IMBE also 
made use of time-differential coding of the sine-wave phases, and as a result, pro- 
duced synthetic speech that was reverberant particularly for low-pitched speakers. 
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It wasn't until the coherent excitation phase model was used that the reverberant 
quality was eliminated from IMBE system. 

It would seem that the IMBE coding scheme would be overly dependent on 
the pitch and that performance might suffer under channel errors. However, the 
IMBE system consistently performs well under the most severe channel error con- 
ditions and it is apparent that the system is extremely well-designed for robust 
performance over channels having random and burst errors. This shows that the 
frequency-domain approach to speech coding using the sine-wave model is amenable 
to development of effective smoothing algorithms during frames that have been 
severely damaged due to channel errors and that the IMBE developers have been 
successful in exploiting this capability. With the impressive performance achieved 
by the latest version of the IMBE algorithm in the Inmarsat Mini-M tests [53] it is 
clear that substantial improvements to the quality and robustness of the algorithm 
have been made over those versions of the system that have been reported in the 
literature. 

7.  Conclusions 

Since the basic sine-wave analysis/synthesis system can reproduce speech signals 
with high quality, it provides an ideal basis for the development of a speech coder 
since, given a high enough data rate, the performance of the codec can be made 
arbitrarily close to that of the basic system. In fact, using the sine-wave based 
pitch estimator described in section 3, it is possible to use a harmonic set of sine- 
waves to produce synthetic speech that is of very high quality. The quality of the 
coded speech therefore depends on the ability to code the sine-wave amplitudes and 
phases with good fidelity. Since the focus of the chapter has been to develop speech 
coders at rates below 4800 b/s, it was necessary to avoid the problem of coding 
the sine-wave phases and models were developed based on the speech production 
mechanism that led to the so-called minimum-phase harmonic sine-wave system. 
Although there is definitely a quality loss when the synthetic phases are used in 
place of the measured phases, particularly with regard to the replication of sharp 
voicing transitions, the synthetic speech is of acceptable quality for operation at 
the lower data rates. Since the minimum-phase harmonic speech coder depends 
only on the pitch, voicing and sine-wave amplitude parameters, the quality of the 
low-rate coder depends entirely on the ability to code the sine-wave amplitudes 
efficiently. The chapter has described one approach that fits an all-pole model to 
the sine-wave amplitudes and details are given that show how such a system can 
be quantized for operation at low bit-rates. While the methods described are based 
on scalar quantization techniques, work is currently underway to explore whether 
improvements would be possible using vector quantization [59]. It should be obvious 
that there are numerous methods for coding the sine-wave amplitudes and new 
techniques are continually being developed, [60]. In fact in the recent pre-selection 
test for the new DOD Government standard 2400 b/s algorithm [48], five of the 
eight coders tested, could be classified as sinusoidal coders, while the other three 
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were waveform coders of the LPC type. 
Since the sine-wave parameters provide a frequency-domain decomposition of 

the speech signal, some of the perceptual properties of the hearing mechanism 
can more easily be exploited to achieve coding efficiencies. In the development 
of the amplitude coder, for example, coding gains were achieved by warping the 
underlying amplitude information on a perceptual scale before fitting the all-pole 
model. In addition the frequency-domain representation allows for an alternative 
approach to the design of the synthesis post-filter that, as in other contemporary 
low-rate coders, is very important in achieving synthetic sine-wave speech that is 
not muffled. Finally the frequency domain representation provides a convenient 
basis on which to partition the excitation spectrum into bands so that multi-band 
voicing decisions can be made that allow for a mixed voicing excitation. Such voicing 
decisions improve the naturalness of the synthetic speech and increase robustness 
for speech signals that have been corrupted by additive acoustical noise. 

In addition to providing a basis for the development of a parametric vocoder, 
the sinusoidal model is also being combined with waveform coding methods lead- 
ing to the class of waveform-interpolation vocoders [11]. This in turn has led to 
the development of a further decomposition of the sine-wave representation into 
slowly-varying and rapidly-varying components [12, 13]. By computing the sine- 
wave parameters at a relatively high data rate (« 5 ms), matching the parameters 
from frame-to-frame, and applying complementary high-pass and low-pass filters 
to the real and imaginary parts along each of the sine-wave tracks, the rapidly- 
varying and slowly-varying components of the speech signal can be isolated. If the 
rapidly-varying components are quantized crudely but often, and the slowly-varying 
components are quantized accurately but infrequently, high-quality synthetic speech 
can be obtained at 2400 b/s. This is one of the topics to be discussed in the next 
chapter. 
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